......Recent analyses from the Relativistic Heavy Ion Collider (RHIC), a 2.4-mile-circumference "atom smasher" at the U.S. Department of Energy's (DOE) Brookhaven National Laboratory, establish that collisions of gold ions traveling at nearly the speed of light have created matter at a temperature of about 4 trillion degrees Celsius -- the hottest temperature ever reached in a laboratory, about 250,000 times hotter than the center of the Sun.
RHIC's gold-gold collisions produce a freely flowing liquid composed of quarks and gluons. Such a substance, often referred to as quark-gluon plasma, or QGP, filled the universe a few microseconds after it came into existence 13.7 billion years ago. At RHIC, this liquid appears, and the quoted temperature is reached, in less time than it takes light to travel across a single proton.
Hot gas vs. hot liquid
Scientists believe that a plasma of quarks and gluons existed a few microseconds after the birth of the universe, before cooling and condensing to form the protons and neutrons that make up all the matter around us -- from individual atoms to stars, planets, and people. Although the matter produced at RHIC survives for much less than a billionth of a trillionth of a second, its properties can be determined using RHIC's highly sophisticated detectors to look at the thousands of particles emitted during its brief lifetime. The measurements provide new insights into Nature's strongest force -- in essence, what holds all the protons and neutrons of the universe together.
RHIC is making huge strides in field of quantum chromodynamics (QCD), the theory of strong force.{A fundamental force describing the interactions of the quarks and gluons making up hadrons (such as the proton, neutron or pions)}.